首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lack of correlation between transepithelial transport capacity and paracellular pathway ultrastructure in Alcian blue-treated rabbit gallbladders
Abstract:The effects of mucosal application of 1 mg% Alcian blue (a trivalent cationic phthalocyanine dye) on functional and ultrastructural parameters of the isolated rabbit gallbladder have been studied. Apart from minor changes in the shape of the group of central microvilli observed in thin-section electron microscopy and scanning electron microscopy, the major ultrastructural change induced by Alcian blue was an almost complete collapse of intercellular spaces in the region above the tight junctions up to the bases of the marginal microvilli as revealed by thin-section electron microscopy. Freeze-fracture electron microscopy demonstrated a complete disappearance of intramembrane particles of neighboring cell membranes corresponding to the region of interspace collapse. Transepithelial electrical resistance (RT) increased from 44.5 to 58.7 ohm . cm2 upon treatment with Alcian blue. This increase could be well accounted for by the observed structural changes in the paracellular pathway if this pathway determines the low resistance of the rabbit gallbladder epithelium. Despite the increase in RT, net mucosa-to-serosa fluid transport and the spontaneous mucosa- positive potential difference of 3 mV were unaltered by Alcian blue treatment, supporting the hypothesis that the transepithelial transport mechanism per se is electroneutral. A calculation of the maximal paracellular mucosa-to-serosa waterflow in response to a lateral intercellular space hypertonicity of 20 mosM demonstrates that in the Alcian blue-treated gallbladder the resulting figure is about three orders of magnitude too low to keep up with the unaltered spontaneous transepithelial net fluid transport. It is therefore concluded that the tight junction pathway in rabbit gallbladders does not serve as a route for net fluid transport.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号