Snakes survive starvation by employing supply- and demand-side economic strategies |
| |
Authors: | McCue Marshall D |
| |
Affiliation: | Department of Biological Sciences, University of Arkansas, 601 Science Engineering, Fayetteville, AR 72701-4033, USA. mmccue@uark.edu |
| |
Abstract: | Animals vary widely in their abilities to tolerate extended periods of food limitation. Although some snakes are known for their unique ability to survive periods of inanition that last up to 2 years, very little is known about the biological mechanisms that allow them to do this. Consequently, the present study examined physiological, compositional, and morphological responses to 168 days of starvation among three distantly related snake species (i.e., ball python, Python regius; ratsnake, Elaphe obsoleta; and western diamondback rattlesnake, Crotalus atrox). Results revealed that each of these species was able to successfully tolerate starvation by adaptively utilizing supply- and demand-side regulatory strategies. Effective demand-side strategies included the ability of snakes to depress their resting metabolic demands by up to 72%. Moreover, supply-side regulation of resources was evidenced by the ability of snakes to spare their structurally critical protein stores at the expense of lipid catabolism. Such physiological strategies for minimizing endogenous mass and energy flux during periods of resource limitation might help explain the evolutionary persistence of snakes over the past 100 million years, as well as the repeated radiation of snake lineages into relatively low-energy environments. The final section of this study outlines a novel modeling approach developed to characterize material and chemical flux through animals during complete inanition. This approach was used to make comparisons about the efficacy of various supply- and demand-side starvation strategies among the three species examined, but could also be used to make similar comparisons among other types of animals. |
| |
Keywords: | Body composition Energetics Metabolism Reptiles Fasting |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|