首页 | 本学科首页   官方微博 | 高级检索  
     


Systemic Preconditioning by a Prolyl Hydroxylase Inhibitor Promotes Prevention of Skin Flap Necrosis via HIF-1-Induced Bone Marrow-Derived Cells
Authors:Mitsuru Takaku  Shuhei Tomita  Hirotsugu Kurobe  Yoshitaka Kihira  Atsushi Morimoto  Mayuko Higashida  Yasumasa Ikeda  Akira Ushiyama  Ichiro Hashimoto  Hideki Nakanishi  Toshiaki Tamaki
Affiliation:Department of Plastic and Reconstructive Surgery, The University of Tokushima Graduate School, Tokushima, Japan.
Abstract:

Background

Local skin flaps often present with flap necrosis caused by critical disruption of the blood supply. Although animal studies demonstrate enhanced angiogenesis in ischemic tissue, no strategy for clinical application of this phenomenon has yet been defined. Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in ischemic vascular responses, and its expression is induced by the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). We assessed whether preoperative stabilization of HIF-1 by systemic introduction of DMOG improves skin flap survival.

Methods and Results

Mice with ischemic skin flaps on the dorsum were treated intraperitoneally with DMOG 48 hr prior to surgery. The surviving area with neovascularization of the ischemic flaps was significantly greater in the DMOG-treated mice. Significantly fewer apoptotic cells were present in the ischemic flaps of DMOG-treated mice. Interestingly, marked increases in circulating endothelial progenitor cells (EPCs) and bone marrow proliferative progenitor cells were observed within 48 hr after DMOG treatment. Furthermore, heterozygous HIF-1α-deficient mice exhibited smaller surviving flap areas, fewer circulating EPCs, and larger numbers of apoptotic cells than did wild-type mice, while DMOG pretreatment of the mutant mice completely restored these parameters. Finally, reconstitution of wild-type mice with the heterozygous deficient bone marrow cells significantly decreased skin flap survival.

Conclusion

We demonstrated that transient activation of the HIF signaling pathway by a single systemic DMOG treatment upregulates not only anti-apoptotic pathways but also enhances neovascularization with concomitant increase in the numbers of bone marrow-derived progenitor cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号