Development of new plasmid DNA vaccine vectors with R1-based replicons |
| |
Authors: | Diana M Bower Kristala LJ Prather |
| |
Affiliation: | 1. Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-454, Cambridge, MA, 02139, USA
|
| |
Abstract: | ABSTRACT: BACKGROUND: There has been renewed interest in biopharmaceuticals based on plasmid DNA (pDNA) in recent years due to the approval of several veterinary DNA vaccines, on-going clinical trials of human pDNA-based therapies, and significant advances in adjuvants and delivery vehicles that have helped overcome earlier efficacy deficits. With this interest comes the need for high-yield, cost-effective manufacturing processes. To this end, vector engineering is one promising strategy to improve plasmid production. RESULTS: In this work, we have constructed a new DNA vaccine vector, pDMB02-GFP, containing the runaway R1 origin of replication. The runaway replication phenotype should result in plasmid copy number amplification after a temperature shift from 30degreesC to 42degreesC. However, using Escherichia coli DH5alpha as a host, we observed that the highest yields of pDMB02-GFP were achieved during constant-temperature culture at 30degreesC, with a maximum yield of approximately 19 mg pDNA/g DCW being observed. By measuring mRNA and protein levels of the R1 replication initiator protein, RepA, we determined that RepA may be limiting pDMB02-GFP yield at 42degreesC. A mutant plasmid, pDMB-ATG, was constructed by changing the repA start codon from the sub-optimal GTG to ATG. In cultures of DH5alpha[pDMB-ATG], temperature-induced plasmid amplification was more dramatic than that observed with pDMB02-GFP, and RepA protein was detectable for several hours longer than in cultures of pDMB02-GFP at 42degreesC. CONCLUSIONS: Overall, we have demonstrated that R1-based plasmids can produce high yields of high-quality pDNA without the need for a temperature shift, and have laid the groundwork for further investigation of this class of vectors in the context of plasmid DNA production. |
| |
Keywords: | |
本文献已被 PubMed SpringerLink 等数据库收录! |
|