首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Organic matter and nitrogen accumulation and nitrogen fixation during early ecosystem development in Hawaii
Authors:Timothy E Crews  Lianne M Kurina  Peter M Vitousek
Institution:(1) Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA;(2) Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA;(3) Environmental Studies, Prescott College, Prescott, AZ, 86301, USA, e-mail:
Abstract:We used a chronosequence comprised of 10 y, 52 y and 142 yold `a'a lava flows on Mauna Loa, Hawaii, to determine theaccumulation of organic matter and nitrogen and rates of nitrogenfixation through time. The mass of organic matter (live and deadbiomass and soil organic matter) on the 1984, 1942 and 1852 lavaflows was 0.6, 2.2 and 7.6 kg m– 2, respectively, while total N was 4.8, 10.9 and 85.7 g m– 2.We estimated the total rates of nitrogen fixation for thethree different aged ecosystems using an acetylene reduction assaycalibrated with 15N incubations. While mean rates of total N fixation remained largely constant across the three sites – between2.0 and 3.1 kg ha– 1 y– 1 – the most important sources of N fixation changed. On the 10 y flow, the most important fixer was the pioneering cyanolichen, Stereocaulon vulcani. After 52 years ofecosystem development, the most important N fixer was a cyanoalga,while after 142 years, the predominant N fixers were heterotrophicbacteria associated with leaf litter, twigs and detritus. The totalamount of N accumulated after 52 years of ecosystem development wasequivalent to cumulative inputs through biological N fixation. After 142 years, however, cumulative inputs from N fixation couldonly account for between 27–59% of the total nitrogen accrued.We used fertilizer additions of all essential nutrients otherthan N to test whether the availability of lithophilic nutrientsregulated rates of N fixation in early ecosystem development. Ratesof nitrogen fixation by the lichen, S. vulcani, approximately doubled when fertilized on the 1984 and 1942 flows. Rates of N-fixation by heterotrophic nitrogen fixing bacteria on leaf litter ofMetrosideros polymorpha also increased significantly when fertilized with lithophilic nutrients. These findings suggest that weathering rates of lava in part regulate rates of nitrogen fixation in these young ecosystems.
Keywords:biomass  chronosequence  lithophilic nutrients  nitrogen fixation  primary succession
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号