首页 | 本学科首页   官方微博 | 高级检索  
     


Rapid effects of estrogen on G protein-coupled receptor activation of potassium channels in the central nervous system (CNS)
Authors:Kelly Martin J  Qiu Jian  Wagner Edward J  Rønnekleiv Oline K
Affiliation:

Department of Physiology and Pharmacology, L334 Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA

Abstract:Estrogen rapidly alters the excitability of hypothalamic neurons that are involved in regulating numerous homeostatic functions including reproduction, stress responses, feeding and motivated behaviors. Some of the neurons include neurosecretory neurons such as gonadotropin-releasing hormone (GnRH) and dopamine neurons, and local circuitry neurons such as proopiomelanocortin (POMC) and γ-aminobutyric acid (GABA) neurons. We have elucidated several non-genomic pathways through which the steroid alters synaptic responses in these hypothalamic neurons. We have examined the modulation by estrogen of the coupling of various receptor systems to inwardly-rectifying and small-conductance, Ca2+-activated K+ (SK) channels using intracellular sharp-electrode and whole-cell recording techniques in hypothalamic slices from ovariectomized female guinea pigs. Estrogen rapidly uncouples μ-opioid receptors from G protein-gated inwardly-rectifying K+ (GIRK) channels in POMC neurons and GABAB receptors from GIRK channels in dopamine neurons as manifested by a reduction in the potency of μ-opioid and GABAB receptor agonists to hyperpolarize their respective cells. This effect is blocked by inhibitors of protein kinase A (PKA) and protein kinase C (PKC). In addition, after 24 h following steroid administration in vivo, the GABAB/GIRK channel uncoupling observed in GABAergic neurons of the preoptic area is associated with reduced agonist efficacy. Conversely, estrogen enhances the efficacy of 1-adrenergic receptor agonists to inhibit apamin-sensitive SK currents in these preoptic GABAergic neurons, and does so in both a rapid and sustained fashion. Finally, we observed a direct, steroid-induced hyperpolarization of GnRH neurons. These findings indicate a richly complex yet coordinated steroid modulation of K+ channel activity in hypothalamic (POMC, dopamine, GABA, GnRH) neurons that are involved in regulating numerous homeostatic functions.
Keywords:Dopamine   POMC   GABA   Norepinephrine   K+ channel   Protein kinase
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号