首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber
Authors:Papanikolopoulou Katerina  Schoehn Guy  Forge Vincent  Forsyth V Trevor  Riekel Christian  Hernandez Jean-François  Ruigrok Rob W H  Mitraki Anna
Institution:Institut de Biologie Structurale, UMR 5075, CEA-CNRS-UJF, 41 Rue Jules Horowitz, 38027 Grenoble, European Molecular Biology Laboratory, 6 Rue Jules Horowitz, 38042 Grenoble, France.
Abstract:Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号