首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Scanning and transmission electron microscopy of the squamose gill-filament epithelium from fresh- and seawater adaptedTilapia
Authors:Lev Fishelson
Institution:(1) Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
Abstract:Synopsis The architecture of the gill structure of variousTilapia species was studied in relation to their adaptability to hypersaline media. Using SEM and EM, it was shown that the squamose epithelial cells of the gills have species-typical patterns of ridges on their outer surfaces. These have previously been misinterpreted by other authors as microvilli or stereocillia. The ridges are more dense and better developed in euryhaline species, likeT. zillii, and less so in stenohaline species likeSarotherodon niloticus. Comparing freshwater and seawater-adapted individuals ofT. zillii, S. niloticus, S. galflaeus, andTristramella sacra, it was shown that in fresh water the surface cells are slightly swollen, extending over the openings of the chloride cells. During adaptation to sea water, these ridges become higher and denser and the cell surface shrinks, exposing the underlying orifices of the apical crypts of the chloride cells. The more euryhaline the species, the less change there is in the ridge pattern of the cells during passage from fresh to sea water. This evidence implicates the gill epithelium, together with the chloride cells, in the process of osmoregulation.
Keywords:Gill epithelium  Cell ridges  Chloride cells  Osmoregulation  Fish culture  Ionoregulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号