首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of n-alcohols and glycerol on the pretransition of dipalmitoylphosphatidylcholine
Authors:J A Veiro  P Nambi  L L Herold  E S Rowe
Abstract:We have systematically investigated the effect of short-chain n-alcohols and glycerol on the pretransition of 1,2-dipalmitoylphosphatidylcholine (DPPC) by spectrophotometry. It is found that the n-alcohols and glycerol remove the pretransition above a critical concentration for each ligand. In addition, the short-chain n-alcohols below the critical concentration decrease the pretransition temperature. The longer the aliphatic chain length of the n-alcohol (up to butanol) the greater the decrease in the pretransition temperature, and the lower the concentration necessary to remove the pretransition. However, glycerol differs from the short-chain n-alcohols in that it has no significant effect on either the pretransition or the main transition, but it is also capable of removing the pretransition above a critical concentration. It has previously been shown that alcohols have a biphasic effect on the main transition temperature of phosphatidylcholines (Rowe, E.S. (1983) Biochemistry 22, 3299-3305). At high alcohol concentrations, the main transition is not thermodynamically reversible (Rowe, E.S. (1985) Biochim. Biophys. Acta 813, 321-330). Recently, Simon and McIntosh (Biochim. Biophys. Acta (1984) 773, 169-172) have identified that at high ethanol concentration DPPC exists in the interdigitated phase. The critical ligand concentration at which the pretransition disappears coincides with the induction of main transition hysteresis and the biphasic alcohol effect in the main transition. These three effects appear to correlate with the induction of the interdigitated gel state by alcohols and glycerol.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号