首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A comparative evaluation of models of cinnabar moth dynamics
Authors:M P Gillman  M J Crawley
Institution:(1) Centre for Population Biology, Department of Biology, Imperial College, Silwood Park, SL5 7PY Ascot, Berkshire, UK
Abstract:Summary 1. A complex model of cinnabar moth dynamics proposed by Dempster and Lakhani (1979) with 23 parameters is reduced to a single equation with five parameters, and the behaviour of the reduced model shown to explain most features of the full model. 2. The efficiency of the full model is compared with the reduced model and with two even simpler models (the two parameter discrete logistic and a four parameter model based on a step-function for mortality) in their abilities to describe time series data of cinnabar moth population densities from Weeting Heath. Models with more parameters were not significantly better than few-parameter models in describing population trajectories. 3. Models that included a driving variable (in this case observed rainfall data) were no better at describing the data than simpler models without driving variables. It appears, therefore, that the routine inclusion of driving variables may be counterproductive, unless there is compelling empirical or theoretical evidence of their importance and the mode of action of the driving variables can be modelled mechanistically. For example, the regression model used to describe the relationship between rainfall and plant biomass in Dempster and Lakhani (1979), breaks down if rainfall is assumed to be constant, because there is no explicit model for the regulation of plant biomass. 4. The parameter values of the cinnabar-ragwort interaction suggest that cinnabar moth dynamics may be chaotic. Whether or not field data exhibit chaos or environmental stochasticity (or a mixture of both) is impossible to determine from inspection of time series data on population density. There is an urgent need for experimental and theoretical protocols to disentangle these two sources of population fluctuation.
Keywords:Population dynamics  Driving variables-Chaos  Tyria jacobaeae Senecio jacobaea
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号