首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Retinyl ester homeostasis in the adipose differentiation-related protein-deficient retina
Authors:Imanishi Yoshikazu  Sun Wenyu  Maeda Tadao  Maeda Akiko  Palczewski Krzysztof
Institution:Department of Pharmacology and Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio 44106.
Abstract:The retinal pigmented epithelium (RPE) plays an essential role in vision, including storing and converting retinyl esters of the visual chromophore, 11-cis-retinal. Retinyl ester storage structures (RESTs), specialized lipid droplets within the RPE, take up retinyl esters synthesized in the endoplasmic reticulum. Here we report studies of mice lacking exons 2 and 3 of the gene encoding adipose differentiation-related protein (Adfp), a structural component of RESTs. We found that dark adaptation was slower in Adfp(Delta2-3/Delta2-3) than in Adfp(+/+) mice and that Adfp(Delta2-3/Delta2-3) mice had consistently delayed clearances of all-trans-retinal and all-trans-retinol from rod photoreceptor cells. Two-photon microscopy revealed aberrant trafficking of all-trans-retinyl esters in the RPE of Adfp(Delta2-3/Delta2-3) mice, a problem caused by abnormal maintenance of RESTs in the dark-adapted state. Retinyl ester accumulation was also reduced in Adfp(Delta2-3/Delta2-3) as compared with Adfp(+/+) mice. These observations suggest that Adfp plays a unique role in vision by maintaining proper storage and trafficking of retinoids within the eye.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号