Role of the aromatic residues in the near-amino terminal motif of vimentin in intermediate filament assembly in vitro |
| |
Authors: | Gohara Rumi Nishikawa Sadakatsu Takasaki Yozo Ando Shoji |
| |
Affiliation: | Division of Biopolymer Research, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan. |
| |
Abstract: | Type III and IV intermediate filament (IF) proteins share a conserved sequence motif of -Tyr-Arg-Arg-X-Phe- at the near-amino termini. To characterize significance of the aromatic residues in the motif, we prepared vimentin mutants in which Tyr-10 and Phe-14 are substituted with Asn and Ser (Vim[Y10N], Vim[F14S] and Vim[Y10N, F14S]), and examined assembly properties in vitro by electron microscopy and viscosity measurements. At 2 s after initiation of assembly reaction at pH 7.2 and 150 mM NaCl, all the vimentin mutants formed so-called unit-length filaments (ULFs) that were slightly larger than ULFs of wild-type vimentin. In following filament elongation, Vim[Y10N, F14S] and Vim[Y10N] performed longitudinal annealing of ULFs very rapidly and formed IFs within only 2.5 and 5 min, respectively, while Vim[F14S] and wild-type vimentin gave IFs by 40-60 min. The IFs of Vim[Y10N, F14S] and Vim[Y10N], however, tended to intertwine each other and formed bundles in parts of the specimens. The intertwinements decreased as the salt concentration decreased, and optimal salt concentration for the two mutants to form normal IFs was 50 mM. These results suggest that the aromatic residues, especially Tyr-10, in the motif have a role in controlling intermolecular interactions involved in IF assembly in vitro and suppress undesirable filament intertwinements at physiological ionic strength. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|