首页 | 本学科首页   官方微博 | 高级检索  
     


Electron Microscopic Studies of Skeletal and Cardiac Muscle of a Benthic Fish. I. Myofibrillar Structure in Resting and Contracted Muscle
Authors:HERMAN, LAWRENCE   DREIZEN, PAUL
Affiliation:Department of Pathology, State University of Neiv York Downstate Medical Center Brooklyn, New York 11203
Department of Medicine and Program in Biophysics, State University of Neiu York, Downstale Medical Cente Brooklyn, New York 11203
Abstract:SYNOPSIS. Electron microscopic studies are reported on glycerinatedskeletal and cardiac muscle of a benthic fish, Coryphaenoidesspecies. In white skeletal muscle, the sarcomeres have a restinglength of approximately 1.8 µ, with thick filaments 1.4µ and thin filaments 0.75 µ in length. These dimensionsare somewhat shorter than filament lengths of oilier vertebratemuscles, possibly due to the elfect of volume increase duringassembly of thick and thin filaments at high hydrostatic pressure.During ATP-induced contraction of Coryphaenoides muscle fromsarcomere lengths of 1.8 µ to 1.6 µ, there is acharacteristic interdigitation of thick and thin filaments,with decrease in I band length and no change in length of thickor thin filaments. However, in sarcomeres contracted to lengthsof 1.5 µ. to 1.2 µ, there is a slight shorteningof the A band, apparently due to shortening of thick filaments,that occurs despite the presence of residual I band in the samesarcomeres. There is no obvious crumpling or distortion of thickfilaments during contraction to sarcomere lengths as low as1.0 µ, but filament organization undergoes extensive disarrayat sarcomere lengths approaching 0.7 µ. Although effectsfrom heterogeneity of filament length cannot be excluded withcertainty, the present evidence does suggest that contractionot Coryphaenoides muscle from 1.6 µ to 1.0 µ sarcomerelengih is accompanied by shortening of thick filaments consequentto a structural change within the thick filament core.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号