首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of factor Xa and protein S on the individual activated protein C-mediated cleavages of coagulation factor Va
Authors:Norstrøm Eva A  Tran Sinh  Steen Mårten  Dahlbäck Björn
Institution:Department of Laboratory Medicine, Clinical Chemistry, Lund University, the Wallenberg Laboratory, University Hospital, Malm?, SE-205 02 Malm?, Sweden.
Abstract:Activated protein C inhibits the procoagulant function of activated factor V (FVa) through proteolytic cleavages at Arg-306, Arg-506, and Arg-679. The cleavage at Arg-506 is kinetically favored but protected by factor Xa (FXa). Protein S has been suggested to annihilate the inhibitory effect of FXa, a proposal that has been challenged. To elucidate the effects of FXa and protein S on the individual cleavage sites of FVa, we used recombinant FVa:Q306/Q679 and FVa:Q506/Q679 variants, which can only be cleaved at Arg-506 and Arg-306, respectively. In the presence of active site blocked FXa (FXa-1.5-dansyl-Glu-Gly-Arg), the FVa inactivation was followed over time, and apparent second order rate constants were calculated. Consistent with results on record, we observed that FXa-1.5-dansyl-Glu-Gly-Arg decreased the Arg-506 cleavage by 20-fold, with a half-maximum inhibition of approximately 2 nM. Interestingly and in contrast to the inhibitory effect of FXa on the 506 cleavage, FXa stimulated the Arg-306 cleavage. Protein S counteracted the inhibition by FXa of the Arg-506 cleavage, whereas protein S and FXa yielded additive stimulatory effect of the cleavage at Arg-306. This suggests that FXa and protein S interact with distinct sites on FVa, which is consistent with the observed lack of inhibitory effect on FXa binding to FVa by protein S. We propose that the apparent annihilation of the FXa protection of the Arg-506 cleavage by protein S is due to an enhanced rate of Arg-506 cleavage of FVa not bound to FXa, resulting in depletion of free FVa and dissociation of FXa-FVa complexes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号