PI3K-dependent lysosome exocytosis in nitric oxide-preconditioned hepatocytes |
| |
Authors: | Carini Rita Trincheri Nicol Francesca Alchera Elisa De Cesaris Maria Grazia Castino Roberta Splendore Roberta Albano Emanuele Isidoro Ciro |
| |
Affiliation: | Laboratory of Pathology, Dipartimento di Scienze Mediche, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy. |
| |
Abstract: | We investigated the signal mediators and the cellular events involved in the nitric oxide (NO)-induced hepatocyte resistance to oxygen deprivation in isolated hepatocytes treated with the NO donor (Z)-1-(N-methyl-N-[6-(N-methylammoniohexyl)amino])diazen-1-ium-1,2-diolate (NOC-9). NOC-9 greatly induced PI3K activation, as tested by phosphorylation of PKB/Akt. This effect was prevented by either 1H-(1,2,4)-oxadiazolo-(4,3)-quinoxalin-1-one, an inhibitor of the soluble guanylate cyclase (sGC), or KT5823, an inhibitor of cGMP-dependent kinase (cGK), as well as by farnesyl protein transferase inhibitor, which blocks the function of Ras GTPase. Bafilomycin A, an inhibitor of the lysosome-type vacuolar H+-ATPase, cytochalasin D, which disrupts the cytoskeleton-dependent organelle traffic, and wortmannin, which inhibits the PI3K-dependent traffic of lysosomes, all abolished the NOC-9-induced hepatocyte protection. The treatment with NOC-9 was associated with the PI3K-dependent peripheral translocation and fusion with the plasma membrane of lysosomes and the appearance at the cell surface of the vacuolar H+-ATPase. Inhibition of sGC, cGK, and Ras, as well as the inhibition of PI3K by wortmannin, prevented the exocytosis of lysosomes and concomitantly abolished the protective effect of NOC-9 on hypoxia-induced pHi and [Na+]i alterations and cell death. These data indicate that NO increases hepatocyte resistance to hypoxic injury by activating a pathway involving Ras, sGC, and cGK that determines PI3K-dependent exocytosis of lysosomes. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|