首页 | 本学科首页   官方微博 | 高级检索  
     


Squeezed exponential kinetics to describe a nonglassy downhill folding as observed in a lattice protein model
Authors:Nakamura Hironori K  Sasai Masaki  Takano Mitsunori
Affiliation:Department of Life Sciences/Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
Abstract:We previously studied the so-called strange kinetics in the two-dimensional lattice HP model. To further study the strange kinetics, folding processes of a 27-mer cubic lattice protein model with Gō potential were investigated by simulating how the bundle of folding trajectories, consisting of a number of independent Monte Carlo simulations, evolves as the folding reaction proceeds, covering a wide range of temperature. Three realms of folding kinetics were observed depending on temperature. Although at temperatures where folding was two-state-like, the kinetics was conventional single exponential, we found that the time course data were well represented by a squeezed (or "shrunken") exponential function, exp [-(t/tau)beta] with beta > 1, at temperatures lower than the folding temperature, where folding was fastest and of a nonglassy downhill type. The squeezed exponential kinetics was found to pertain to the subdiffusion on the nonglassy downhill free energy surface and presents a marked contrast both to the single exponential kinetics and to the stretched exponential kinetics that was observed at lower temperatures where folding was also downhill but topological frustration came into effect. The observed temperature dependence of the folding kinetics suggests that some small single-domain proteins may follow the squeezed exponential kinetics at about the room temperature.
Keywords:two-state folder  temperature dependence  stretched exponential  free energy profile  population analysis  subdiffusion  kinetic partitioning  first passage time  Monte Carlo simulation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号