首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation of 3',5'-cyclic adenosine monophosphate phosphodiesterase by calcium ion and a protein activator.
Authors:R D Wickson  R J Boudreau  G I Drummond
Abstract:3',5'-CAMP phosphodiesterase was partially purified from bovine cerebral cortex. A heat-stable activating factor was separated from the enzyme by chromatography on DEAE-cellulose. The enzyme in crude ammonium sulfate fractions was stimulated by 5 mM CaCl2. This stimulation was reversed by the calcium chelator EGTA. The main phosphodiesterase peak obtained by DEAE-cellulose chromatography was not stimulated by Ca2+. Upon addition of column effluent containing a heat stable factor, Ca2+ activation was restored. Protein activator was inactive when endogenous contaminating Ca2+ was complexed with EGTA. It was concluded that activation of phosphodiesterase requires the presence of both activator and Ca1+. From an analysis of activation of cGMP hydrolysis a kinetic model for the interaction of Ca2+ and protein activator with the phosphodiesterase was developed. Heterotropic cooperativity between the binding of Ca2+ and protein activator to the phosphodiesterase was observed, i.e., Ca1+ decreased the apparent dissociation constant for protein activator and protein activator decreased the apparent dissociation constant for Ca2+.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号