首页 | 本学科首页   官方微博 | 高级检索  
     


A theory of natural selection incorporating interaction among individuate. X. Use of groups consisting of a mating pair together with haploid and diploid caste members
Authors:Bruce Griffing
Affiliation:Department of Genetics, The Ohio State University, Columbus, Ohio 43210, U.S.A.
Abstract:This paper and the previous member of the series, deal with genetical mechanisms responsible for the evolution of eusociality (a level of social organization that includes differentiated sterile castes) among the “social” insects. Eusociality has evolved in a number of different species. Two different types of genetic systems are represented among these species: diplodiploidy (both sexes diploid) and haplodiploidy (haploid males and diploid females). The previous paper examined the evolution of a sterile caste system in the context of diplodiploidy, and the present paper considers the evolution of eusociality in the context of haplodiploidy.The present study demonstrates that selection operating with regard to random groups within the haplodiploid inheritance system cannot result in the evolution of a sterile caste system. Thus haplodiploidy, in itself, is not sufficient for the evolution of eusociality. However, if the sterile caste members are related to the reproductive members of the group, the appropriate caste associate gene effects are included in the function determining gene frequency change (i.e. Δpi), and therefore, eusociality can evolve. This is true for both haploid and diploid castes.In comparing the two modes of inheritance, it is demonstrated that haplodiploidy provides up to 37·5% increased selection efficiency relative to diplodiploidy in evolving a social caste system in the absence of inbreeding.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号