首页 | 本学科首页   官方微博 | 高级检索  
     


Conformational dynamics of the SH1-SH2 helix in the transition states of myosin subfragment-1
Authors:Nitao Lisa K  Yeates Todd O  Reisler Emil
Affiliation:Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
Abstract:The alpha-helix containing the thiols, SH1 (Cys-707) and SH2 (Cys-697), has been proposed to be one of the structural elements responsible for the transduction of conformational changes in the myosin head (subfragment-1 (S1)). Previous studies, using a method that isolated and measured the rate of the SH1-SH2 cross-linking step, showed that this helix undergoes ligand-induced conformational changes. However, because of long incubation times required for the formation of the transition state complexes (S1.ADP.BeF(x), S1.ADP.AlF(4)-, and S1.ADP.V(i)), this method could not be used to determine the cross-linking rate constants for such states. In this study, kinetic data from the SH1-SH2 cross-linking reaction were analyzed by computational methods to extract rate constants for the two-step mechanism. For S1.ADP.BeF(x), the results obtained were similar to those for S1.ATPgammaS. For reactions involving S1.ADP.AlF(4)- and S1.ADP.V(i), the first step (SH1 modification) is rate limiting; consequently, only lower limits could be established for the rate constants of the cross-linking step. Nevertheless, these results show that the cross-linking rate constants in the transition state complexes are increased at least 20-fold for all the reagents, including the shortest one, compared with nucleotide-free S1. Thus, the SH1-SH2 helix appears to be destabilized in the post-hydrolysis state.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号