首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermodynamics of active-site ligand binding to Escherichia coli glutamine synthetase
Authors:A Ginsburg  E G Gorman  S H Neece  M B Blackburn
Institution:Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892.
Abstract:Active-site ligand interactions with dodecameric glutamine synthetase from Escherichia coli have been studied by calorimetry and fluorometry using the nonhydrolyzable ATP analogue 5'-adenylyl imidodiphosphate (AMP-PNP), L-glutamate, L-Met-(S)-sulfoximine, and the transition-state analogue L-Met-(S)-sulfoximine phosphate. Measurements were made with the unadenylylated enzyme at pH 7.1 in the presence of 100 mM KCl and 1.0 mM MnCl2, under which conditions the two catalytically essential metal ion sites per subunit are occupied and the stoichiometry of active-site ligand binding is equal to 1.0 equiv/subunit. Thermodynamic linkage functions indicate that there is strong synergism between the binding of AMP-PNP and L-Met-(S)-sulfoximine (delta delta G' = -6.4 kJ/mol). In contrast, there is a small antagonistic effect between the binding of AMP-PNP and L-glutamate (delta delta G' = +1.4 kJ/mol). Proton effects were negligible (less than or equal to 0.2 equiv of H+ release or uptake/mol) for the different binding reactions. The binding of AMP-PNP (or ATP) to the enzyme is entropically controlled at 303 K with delta H = +5.4 kJ/mol and delta S = +150 J/(K.mol). At 303 K, the binding of L-glutamate (delta H = -22.2 kJ/mol) or L-Met-(S)-sulfoximine delta H = -45.6 kJ/mol with delta Cp approximately equal to -670 +/- 420 J/(K.mol)] to the AMP-PNP.Mn.enzyme complex is enthalpically controlled with opposing delta S values of -29 or -46 J/(K.mol), respectively. The overall enthalpy change is negative and the overall entropy change is positive for the simultaneous binding of AMP-PNP and L-glutamate or of AMP-PNP and L-Met-(S)-sulfoximine to the enzyme. For the binding of the transition-state analogue L-Met-(S)-sulfoximine phosphate (which inactivates the enzyme by blocking active sites), both enthalpic and entropic contributions also are favorable at 303 K delta G' approximately equal to -109 and delta H = -54.8 kJ/mol of subunit and delta S approximately equal to +180 J/(K.mol)].
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号