首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Slow adaptation in spider mechanoreceptor neurons
Authors:Ulli Höger  Andrew S French
Institution:(1) Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, B3H 1X5
Abstract:Slow adaptation of action potential firing is a common but poorly understood property of sensory neurons. We quantified slow adaptation in a cuticular mechanoreceptor organ of the spider, Cupiennius salei, by stimulating with continuous pseudorandom mechanical displacements while recording action potentials intracellularly from the cell bodies. Firing rate declined over a period of several minutes before reaching a steady level at about half the initial rate. This slow adaptation was fitted by an exponential decay with mean time constant of 18.5 s. Recovery from slow adaptation was also fitted by an exponential process, but with a longer time constant of 167 s. The receptor potential produced by the same stimulation protocol did not change its amplitude or dynamics, showing that slow adaptation occurs during action potential encoding from the receptor potential. Experiments with chemical blockers of calcium entry or the known potassium currents failed to reduce the slow adaptation. The Na+/K+ pump blocker Ouabain decreased the time constant of slow adaptation, suggesting that ion accumulation is involved. In some experiments, a second class of small action potentials were observed, which were tentatively attributed to failed conduction from the sensory dendrite through the soma to the axon.
Keywords:Cupiennius salei  Excitability  Sensory transduction  Calcium  Arthropod
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号