首页 | 本学科首页   官方微博 | 高级检索  
     


Deglycosylated milin unfolds via inactive monomeric intermediates
Authors:Subhash Chandra Yadav  N. K. Prasanna Kumari  Medicherla V. Jagannadham
Affiliation:(1) Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, UP, India;(2) Nanobiology Lab, Biotechnology Division, Institute of Himalayan Bioresource Technology (CSIR), Palampur, 176061, HP, India
Abstract:The effect of deglycosylation on the physiological and functional organization of milin was studied under different denaturizing conditions. Trifluoromethanesulfonic acid mediated deglycosylation resulted in insoluble milin, which was found to be soluble only in 1.5 M GuHCl with native-like folded structure. Kinetic stability, proteolytic activity, and dimeric association were lost in deglycosylated milin. Urea-induced unfolding revealed two inactive, highly stable equilibrium intermediates at pH 7.0 and pH 2.0. These intermediates were stable between 5.5–6.5 and 5.0–6.0 M total chaotropes (urea + 1.5 M GuHCl) at pH 7.0 and pH 2.0, respectively. GuHCl-induced unfolding was cooperative and noncoincidental with a broad transition range (2.0–5.0 M) at pH 7.0 and pH 2.0. Equilibrium unfolding of deglycosylated milin by urea and GuHCl substantiates the involvement of various inactive monomeric intermediates. This study provides a way to understand the role of glycosylation in the unfolding mechanism, stability, and functional activity of the serine protease milin.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号