首页 | 本学科首页   官方微博 | 高级检索  
     


Using hierarchical text classification to investigate the utility of machine learning in automating online analyses of wildlife exploitation
Affiliation:1. School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom;2. School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
Abstract:Expanding digital data sources, including social media, online news articles and blogs, provide an opportunity to understand better the context and intensity of human-nature interactions, such as wildlife exploitation. However, online searches encompassing large taxonomic groups can generate vast datasets, which can be overwhelming to filter for relevant content without the use of automated tools. The variety of machine learning models available to researchers, and the need for manually labelled training data with an even balance of labels, can make applying these tools challenging. Here, we implement and evaluate a hierarchical text classification pipeline which brings together three binary classification tasks with increasingly specific relevancy criteria. Crucially, the hierarchical approach facilitates the filtering and structuring of a large dataset, of which relevant sources make up a small proportion. Using this pipeline, we also investigate how the accuracy with which text classifiers identify relevant and irrelevant texts is influenced by the use of different models, training datasets, and the classification task. To evaluate our methods, we collected data from Facebook, Twitter, Google and Bing search engines, with the aim of identifying sources documenting the hunting and persecution of bats (Chiroptera). Overall, the ‘state-of-the-art’ transformer-based models were able to identify relevant texts with an average accuracy of 90%, with some classifiers achieving accuracy of >95%. Whilst this demonstrates that application of more advanced models can lead to improved accuracy, comparable performance was achieved by simpler models when applied to longer documents and less ambiguous classification tasks. Hence, the benefits from using more computationally expensive models are dependent on the classification context. We also found that stratification of training data, according to the presence of key search terms, improved classification accuracy for less frequent topics within datasets, and therefore improves the applicability of classifiers to future data collection. Overall, whilst our findings reinforce the usefulness of automated tools for facilitating online analyses in conservation and ecology, they also highlight that the effectiveness and appropriateness of such tools is determined by the nature and volume of data collected, the complexity of the classification task, and the computational resources available to researchers.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号