首页 | 本学科首页   官方微博 | 高级检索  
     


High resolution retrieval of leaf chlorophyll content over Himalayan pine forest using Visible/IR sensors mounted on UAV and radiative transfer model
Affiliation:1. Remote Sensing Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India;2. Image Processing Laboratory (IPL), University of Valencia, Valencia 46010, Spain;3. DST-Mahamana Centre for Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India;4. Secretary of Research and Postgraduate, CONACYT-UAN, Tepic, Nayarit, Mexico;5. Department of Physics, Indian Institute of Technology (BHU), Varanasi, India
Abstract:Forests play an essential role towards net primary productivity, biological cycles and provide habitat to flora & fauna. To monitor key physiological activities in forest canopies such as photosynthesis, respiration, transpiration, spatially-explicit and precise information of the biochemical (biological) variables such as Leaf Chlorophyll Content (LCC) is required. While lookup-table (LUT)-based Radiative Transfer Model (RTM) inversion against optical remote sensing imagery is regarded as a physically sound and robust approach for retrieving biochemical and biophysical variables, regularization procedures are required to offset the problem of ill-posedness. To optimize the RTM inversion of LCC over a sub-tropical pine forest plantation, in the Western Himalaya, we investigated the role of: (1) cost functions (CFs), (2) added noise, and (3) multiple finest solutions in LUT inversion. Principal CFs were evaluated belonging to three categories: information measures, M-estimates, and minimal contrast approaches. The inversion approaches were applied to a LUT produced by the coupled leaf-canopy model known as PROSAIL RTM and tested in contrast field spectral data obtained from reflectance data derived from UAV (Unmanned Aerial Vehicle) images taken over the canopies of covered pine forests. The Bhattacharyya divergence, an information measure, outperformed all other CFs in LCC inversion, with R2 of 0.94, RMSE of 6.20 μg/cm2 and NRMSE of 12.27% during the validation. The optimized inversion strategy was subsequently applied to a UAV-acquired multispectral image at an 8.2 cm pixel resolution for detailed landscape forest LCC mapping. The associated residuals as provided by the LUT-based inversion provided insights in the spatial consistency of the LCC map.
Keywords:UAV"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_rcxTgGqTxW"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Unmanned Aerial Vehicle  RTM"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_Er5QUNIbsK"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Radiative Transfer Model  LUT"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_RulWWWYHQH"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Lookup Table  MLRA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_vM9DegAjVU"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Machine Learning Regression Algorithms  LCC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_YNRlc4pDm1"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Leaf Chlorophyll Content  SAIL"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_AKFAWn9AnO"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Scattering by Arbitrarily Inclined Leaves  CCC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_kD9fnirYY2"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Canopy Chlorophyll Content  GF"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_SuckJYjs7W"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Green Fraction  VTOL"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_Cw5hx1T2OX"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Vertical Take-Off and Landing  ARTMO"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_FwDykVeULb"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Automated Radiative Transfer Models Operator  OZA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_Y8N4IYULrj"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Observer's Zenith Angle  SPAD"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_iVKw4yTrfW"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Soil Plant Analysis Development  CF"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_3zQbRLi7zV"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Cost Function  LSE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_us4NMtkqPt"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Least Squares Estimation  RMSE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_i5MBxe7xot"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Root Mean Square Error  NRMSE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_1Nu67dIlhk"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Normalized Root Mean Square Error  LHS"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_vor1mpNM2o"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Latin Hypercube Sampling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号