首页 | 本学科首页   官方微博 | 高级检索  
   检索      


RCAD/Ufl1, a Ufm1 E3 ligase,is essential for hematopoietic stem cell function and murine hematopoiesis
Authors:M Zhang  X Zhu  Y Zhang  Y Cai  J Chen  S Sivaprakasam  A Gurav  W Pi  L Makala  J Wu  B Pace  D Tuan-Lo  V Ganapathy  N Singh  H Li
Abstract:The Ufm1 conjugation system is a novel ubiquitin-like modification system, consisting of Ufm1, Uba5 (E1), Ufc1 (E2) and poorly characterized E3 ligase(s). RCAD/Ufl1 (also known as KIAA0776, NLBP and Maxer) was reported to function as a Ufm1 E3 ligase in ufmylation (Ufm1-mediated conjugation) of DDRGK1 and ASC1 proteins. It has also been implicated in estrogen receptor signaling, unfolded protein response (UPR) and neurodegeneration, yet its physiological function remains completely unknown. In this study, we report that RCAD/Ufl1 is essential for embryonic development, hematopoietic stem cell (HSC) survival and erythroid differentiation. Both germ-line and somatic deletion of RCAD/Ufl1 impaired hematopoietic development, resulting in severe anemia, cytopenia and ultimately animal death. Depletion of RCAD/Ufl1 caused elevated endoplasmic reticulum stress and evoked UPR in bone marrow cells. In addition, loss of RCAD/Ufl1 blocked autophagic degradation, increased mitochondrial mass and reactive oxygen species, and led to DNA damage response, p53 activation and enhanced cell death of HSCs. Collectively, our study provides the first genetic evidence for the indispensable role of RCAD/Ufl1 in murine hematopoiesis and development. The finding of RCAD/Ufl1 as a key regulator of cellular stress response sheds a light into the role of a novel protein network including RCAD/Ufl1 and its associated proteins in regulating cellular homeostasis.The Ufm1 (Ubiquitin-fold modifier 1) conjugation system is a novel ubiquitin-like (Ubl) modification system that shares biochemical features with other Ubl systems.1 Ufm1 modifies its target proteins through a biochemical pathway catalyzed by specific E1 (Uba5), E2 (Ufc1) and E3 enzyme(s) even though the identities of E3 ligases remain mostly elusive. Genetic study from Uba5 knockout (KO) mice has shown that Uba5 is indispensable for embryonic erythropoiesis, highlighting the pivotal role of this novel Ubl system in animal development.2 Yet its role in adult erythropoiesis and other developmental processes is largely unexplored and the underlying molecular mechanism remains poorly understood.Regulator of C53 and DDRGK1 (also known as KIAA0776, Ufl1, NLBP and Maxer, referred to as RCAD hereafter) has recently been identified by independent studies as an important regulator of several signaling pathways, including protein ufmylation, NF-κB signaling and unfolded protein response (UPR).3, 4, 5, 6, 7, 8, 9 Endogenous RCAD forms a complex with two proteins: C53 (also known as LZAP and Cdk5rap3) 5, 6, 10 and DDRGK1 (also designated as C20orf116, Dashurin and UFBP1),3, 6, 7, 11 and regulates the stability of its binding partners.5, 6 Intriguingly, Tatsumi et al.3 found that Ufl1 (same as RCAD) promoted ufmylation of DDRGK1, suggesting that RCAD may function as an E3 ligase for ufmylation of DDRGK1. In line with its role in ufmylation, knockdown of endogenous RCAD resulted in attenuated ufmylation of endogenous Ufm1 targets.7, 8 More recently, Yoo et al.12 found that Ufl1-mediated ufmylation of ASC1, a nuclear receptor co-activator, played a crucial role in estrogen receptor signaling and breast cancer development. Nonetheless, the in vivo function of RCAD remains completely unknown.In this study, we report the establishment of RCAD KO mouse models. Ablation of RCAD leads to impaired embryogenesis and defective hematopoiesis. Our study provides the first genetic evidence for the indispensable role of this important protein in animal development.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号