首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ursodeoxycholyl lysophosphatidylethanolamide inhibits cholestasis- and hypoxia-induced apoptosis by upregulating antiapoptosis proteins
Authors:Myra Sellinger  Weihong Xu  Anita Pathil  Wolfgang Stremmel  Walee Chamulitrat
Institution:Department of Internal Medicine IV, Gastroenterology and Infectious Diseases, University Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
Abstract:An increase of toxic bile acids such as glycochenodeoxycholic acid occurs during warm ischemia reperfusion causing cholestasis and damage in hepatocytes and intrahepatic biliary epithelial cells. We aim to test antiapoptosis effects of ursodeoxycholyl lysophosphatidylethanolamide under cholestatic induction by glycochenodeoxycholic acid treatment of mouse hepatocytes and hypoxia induction by cobalt chloride treatment of intrahepatic biliary epithelial cancer Mz-ChA-1cell line. Such treatments caused marked increases in apoptosis as evidenced by activation of caspase 3, caspase 8 and poly (ADP-ribose) polymerase-1. Co-treatment with ursodeoxycholyl lysophosphatidylethanolamide significantly inhibited these increases. Interestingly, ursodeoxycholyl lysophosphatidylethanolamide was able to increase expression of antiapoptotic cellular FLICE-inhibitory protein in both cell types. Ursodeoxycholyl lysophosphatidylethanolamide also prevented the decreases of myeloid cell leukemia sequence-1 protein in both experimental systems, and this protection was due to ursodeoxycholyl lysophosphatidylethanolamide’s ability to inhibit ubiquitination-mediated degradation of myeloid cell leukemia sequence-1, and to increase the phosphorylation of GSK-3β. In addition, ursodeoxycholyl lysophosphatidylethanolamide was able to prevent the decreased expression of another antiapoptotic cellular inhibitor of apoptosis 2 in cobalt chloride-treated Mz-ChA-1 cells. Hence, ursodeoxycholyl lysophosphatidylethanolamide mediated cytoprotection against apoptosis during toxic bile-acid and ischemic stresses by a mechanism involving accumulation of cellular FLICE-inhibitory protein, myeloid cell leukemia sequence-1 and cellular inhibitor of apoptosis 2 proteins. Ursodeoxycholyl lysophosphatidylethanolamide may thus be used as an agent to prevent hepatic ischemia reperfusion.
Keywords:Bile acid toxicity  hypoxia  cytoprotective drug  antiapoptosis proteins  proteasome-mediated degradation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号