首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of aromatic amine carcinogen bypass by the Y-family polymerase,Dpo4
Authors:Alfonso Brenlla  David Rueda  Louis J. Romano
Affiliation:1.Department of Chemistry, Wayne State University, Detroit, MI 48202, USA;2.Department of Medicine, Section of Virology, Imperial College London, London, UK;3.Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London, UK
Abstract:Bulky DNA damage inhibits DNA synthesis by replicative polymerases and often requires the action of error prone bypass polymerases. The exact mechanism governing adduct-induced mutagenesis and its dependence on the DNA sequence context remains unclear. In this work, we characterize Dpo4 binding conformations and activity with DNA templates modified with the carcinogenic DNA adducts, 2-aminofluoene (AF) or N-acetyl-2-aminofluorene (AAF), using single-molecule FRET (smFRET) analysis and DNA synthesis extension assays. We find that in the absence of dNTPs, both adducts alter polymerase binding as measured by smFRET, but the addition of dNTPs induces the formation of a ternary complex having what appears to be a conformation similar to the one observed with an unmodified DNA template. We also observe that the misincorporation pathways for each adduct present significant differences: while an AF adduct induces a structure consistent with the previously observed primer-template looped structure, its acetylated counterpart uses a different mechanism, one consistent with a dNTP-stabilized misalignment mechanism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号