首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors
Authors:Park K H  Kim M J  Lee H S  Han N S  Kim D  Robyt J F
Institution:Department of Food Science and Technology and Research Center for New Bio-Materials in Agriculture, Seoul National University, Suwon, South Korea. parkkh@plaza.snu.ac.kr
Abstract:It was observed that Bacillus stearothermophilus maltogenic amylase cleaved the first glycosidic bond of acarbose to produce glucose and a pseudotrisaccharide (PTS) that was transferred to C-6 of the glucose to give an alpha-(1-->6) glycosidic linkage and the formation of isoacarbose. The addition of a number of different carbohydrates to the digest gave transfer products in which PTS was primarily attached alpha-(1-->6) to D-glucose, D-mannose, D-galactose, and methyl alpha-D-glucopyranoside. With D-fructopyranose and D-xylopyranose, PTS was linked alpha-(1-->5) and alpha-(1-->4), respectively. PTS was primarily transferred to C-6 of the nonreducing residue of maltose, cellobiose, lactose, and gentiobiose. Lesser amounts of alpha-(1-->3) and/or alpha-(1-->4) transfer products were also observed for these carbohydrate acceptors. The major transfer product to sucrose gave PTS linked alpha-(1-->4) to the glucose residue. alpha,alpha-Trehalose gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4). Maltitol gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4) to the glucopyranose residue. Raffinose gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4) to the D-galactopyranose residue. Maltotriose gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4) to the nonreducing end glucopyranose residue. Xylitol gave PTS linked alpha-(1-->5) as the major product and D-glucitol gave PTS linked alpha-(1-->6) as the only product. The structures of the transfer products were determined using thin-layer chromatography, high-performance ion chromatography, enzyme hydrolysis, methylation analysis and 13C NMR spectroscopy. The best acceptor was gentiobiose, followed closely by maltose and cellobiose, and the weakest acceptor was D-glucitol.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号