首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Self-assembly of a plant cell wall in vitro
Authors:GJ Hills  JM Phillips  MR Gay  K Roberts
Institution:John Innes Institute, Colney Lane, Norwich NR4 7UH, England
Abstract:A method has been developed by which the cell wall of Chlamydomonas reinhardi may be dissociated into its components, and then reassembled in vitro into a product that is chemically and structurally identical to the original cell wall. Chaotropic agents, such as lithium chloride and sodium perchlorate, separate the wall into two fractions, an insoluble amorphous inner wall layer, which retains its integrity (7.5% by weight of the complete wall) and a salt-soluble fraction containing the homogeneous glycoproteins responsible for the outer crystalline layers of the cell wall. Removal of the salt from dissociated walls by dialysis leads to the rapid recovery of complete reassembled cell walls. The conditions necessary for successful reconstitution of the cell wall in vitro include the presence of a suitable surface, across which a decreasing salt gradient exists, and the presence of both the salt-insoluble and the salt-soluble components. The salt-soluble glycoproteins alone can self-assemble under various conditions to form fragments that have the crystalline structure characteristic of the outer layers of the complete cell wall. Both the inner wall layer and the salt-soluble glyco-proteins have similar bulk amino acid and sugar (arabinose, galactose, mannose) compositions and both contain hydroxyproline. On the basis of the in vitro reconstitution of the cell wall we discuss certain aspects of in vivo cell wall morphogenesis. This communication describes the first case in which a plant cell wall has been reconstructed in vitro, and indicates that components of very large cellular structures are capable of being built by a simple self-assembly process.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号