首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bacterial beta-lyase mediated cleavage and mutagenicity of cysteine conjugates derived from the nephrocarcinogenic alkenes trichloroethylene, tetrachloroethylene and hexachlorobutadiene
Authors:W Dekant  S Vamvakas  K Berthold  S Schmidt  D Wild  D Henschler
Abstract:The metabolism of beta-lyase and the mutagenicity of the synthetic cysteine conjugates S-1,2-dichlorovinylcysteine (DCVC), S-1,2,2-trichlorovinylcysteine (TCVC), S-1,2,3,4,4-pentachlorobuta-1,3-dienylcysteine (PCBC) and S-3-chloropropenylcysteine (CPC) were investigated in Salmonella typhimurium strains TA100, TA2638 and TA98. The bacteria contained significantly higher concentrations of beta-lyase than mammalian subcellular fractions. Bacterial 100,000 X g supernatants cleaved benzthiazolylcysteine to equimolar amounts of mercaptobenzthiazole and pyruvate. DCVC, TCVC and PCBC produced a linear time-dependent increase in pyruvate formation when incubated with bacterial 100,000 X g supernatants; pyruvate formation was inhibited by the beta-lyase inhibitor aminooxyacetic acid (AOAA). CPC was not cleaved by bacterial enzymes to pyruvate. DCVC, TCVC and PCBC were mutagenic in three strains of S. typhimurium (TA100, TA2638 and TA98) in the Ames-test without addition of mammalian subcellular fractions; their mutagenicity was decreased by the addition of AOAA to the preincubation mixture. CPC was not mutagenic in any of the strains of bacteria tested. These results indicate that beta-lyase plays a key role in the metabolism and mutagenicity of haloalkenylcysteines when tested in S. typhimurium systems. The demonstrated formation in mammals of the mutagens DCVC, TCVC and PCBC during biotransformation of trichloroethylene (Tri), tetrachloroethylene (Tetra) and hexachlorobutadiene (HCBD) may provide a molecular explanation for the nephrocarcinogenicity of these compounds.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号