首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of octapeptin-membrane interactions using spin-labeled octapeptin
Authors:P E Swanson  M R Paddy  F W Dahlquist  D R Storm
Abstract:Octapeptin is a membrane-active peptide antibiotic that contains a C10 fatty acid covalently attached to the peptide through an amide bond. Interactions of octapeptin with bacterial membranes and phospholipids were characterized by using spin-labeling techniques and octapeptin derivatives containing fatty acids of varying chain length. Acyl modification of octapeptin demonstrated that the fatty acid of the antibiotic contributed to the antimicrobial activity of octapeptin and its affinity for membranes. The influence of octapeptin and C2 acyloctapeptin on the rates of ascorbate reduction of several membrane-bound doxyl stearates was also examined. These studies demonstrated that octapeptin increaed the rate of diffusion of ascorbate into the lipid bilayer and suggested that the acyl chain contributed to this activity. In addition, an acyl spin-labeled analogue of octapeptin was prepared and shown to retain biological activity. Spectral analysis showed that octapeptin does not aggregate in solution over a wide concentration range. However, the isotropic splitting constant indicated that the acyl chain of octapeptin is not completely exposed to water. It is proposed that the acyl chain of octapeptin in solution interacts with hydrophobic amino acids in the peptide, which partially shields the acyl chain from water. Spectral features of the spin-labeled antibiotic bound to phospholipid dispersions were consistent with directional binding of octapeptin to lipid bilayers with insertion of the fatty acid into the hydrocarbon domain.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号