HISTONE F1 OF TETRAHYMENA MACRONUCLEI : Unique Electrophoretic Properties and Phosphorylation of F1 in an Amitotic Nucleus |
| |
Authors: | Martin A. Gorovsky Josephine Bowen Keevert Gloria Lorick Pleger |
| |
Affiliation: | From the Department of Biology, University of Rochester, Rochester, New York 14627 |
| |
Abstract: | Histone fraction F1 has been isolated and purified from macronuclei of the ciliated protozoan, Tetrahymena pyriformis. In many respects, Tetrahymena F1 is similar to that of other organisms. It is the only Tetrahymena histone soluble in 5% perchloric acid or 5% trichloroacetic acid, has a higher molecular weight than any other Tetrahymena histone, is the histone most easily dissociated from Tetrahymena chromatin, and is susceptible to specific proteolytic cleavage. However, unlike F1 in all other organisms, Tetrahymena F1 is not the slowest-migrating histone fraction when analyzed by polyacrylamide gel electrophoresis at low pH. Tetrahymena F1 also exhibits unusual behavior in sodium dodecyl sulfate-containing polyacrylamide gels, migrating faster than calf thymus F1 at pH 10, and slower than calf thymus F1 at pH 7.6. Tetrahymena F1 was found to be highly phosphorylated in rapidly growing cells, suggesting that the relationship between cell replication and F1 phosphorylation previously observed in mammalian cells may extend to all eukaryotes. The observation that extensive F1 phosphorylation occurs in macronuclei, which divide amitotically, argues against a unique role for F1 phosphorylation in the process of chromosome condensation at mitosis. |
| |
Keywords: | |
|
|