Preferred conformations of RGDX tetrapeptides to inhibit the binding of fibrinogen to platelets |
| |
Authors: | Park Hae Sook Kim Choonmi Kang Young Kee |
| |
Affiliation: | Department of Radiotechnology, Cheju-halla College, Cheju 690-708, Korea. |
| |
Abstract: | The conformational study on Arg-Gly-Asp (RGD)-containing tetrapeptides in the unhydrated and hydrated states has been carried out using the force field ECEPP/3 and the hydration shell model. The tetrapeptides studied here are H-RGDX-OH (X = Trp, Tyr, Phe, Leu, Val, Cys, Gln, and Ser), which show the inhibitory activity for binding of fibrinogen to platelets in the order of RGDW approximately equal to RGDY approximately equal to RGDF approximately equal to RGDL > RGDV > or = RGDC > or = RGDQ > or = RGDS. The backbone conformations with two C(7) backbone-to-backbone hydrogen bonds between Asp and Arg residues and between Xaa and Gly residues are in common most probable for the RGD sequence of RGDX tetrapeptides in the hydrated state. The dominant beta-turns for RGDX are found to be the types V' and IV at Gly-Asp and Asp-Xaa sequences, respectively, which are quite similar to the types II' and I (or II), respectively. However, it cannot be ruled out that the extended conformations are also remarkably feasible for RGDX tetrapeptides in water by peering the distributions of backbone conformations. These calculated results are consistent with the experimental results on RGD-containing proteins and conformationally constrained RGD-containing peptides. The reason why the RGDX becomes more potent as the side chain of the X residue is more hydrophobic may be ascribed to that the more hydrophobic is the residue X, the more populated are beta-turn structures for the Gly-Asp sequence. The hydrophobic side chain of X residue exposed to water is likely to interact with the hydrophobic region of receptor easily. |
| |
Keywords: | RGDX tetrapeptides conformational study β‐turn hydration inhibition of fibrinogen binding to platelets |
本文献已被 PubMed 等数据库收录! |
|