首页 | 本学科首页   官方微博 | 高级检索  
     


Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast
Authors:Mizutani Takeomi  Haga Hisashi  Kawabata Kazushige
Affiliation:Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan. mizutani@sci.hokudai.ac.jp
Abstract:Stiffness responses of fibroblasts were measured by scanning probe microscopy, following elongation or compression by deformation of an elastic substrate by 8%. The cellular stiffness, reflecting intracellular tension acting along stress fibers, decreased or increased instantly in response to the elongating or compressing stimuli, respectively. After this rapid change, the fibroblasts gradually recovered to their initial stiffness during the following 2 h, and then stabilized. The cells did not show conspicuous changes in shape after the 8% deformation during the SPM measurements. Fluorescence examination for GFP-actin demonstrated that the structure of the stress fibers was not altered noticeably by this small degree of deformation. Treatment with Y-27632, to inhibit myosin phosphorylation and abrogate cellular contractility, eliminated the change in stiffness after the mechanical elongation. These results indicate that fibroblasts possess a mechanism that regulates intracellular tension along stress fibers to maintain the cellular stiffness in a constant equilibrium state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号