首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrogen preferences and plant-soil feedbacks as influenced by neighbors in the alpine tundra
Authors:I. W. Ashton  A. E. Miller  W. D. Bowman  K. N. Suding
Affiliation:(1) Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA;(2) Southwest Alaska Network, National Park Service, 240 West 5th Avenue, #114, Anchorage, AK 99501, USA;(3) Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
Abstract:Plant resource partitioning of chemical forms of nitrogen (N) may be an important factor promoting species coexistence in N-limited ecosystems. Since the microbial community regulates N-form transformations, plant partitioning of N may be related to plant–soil feedbacks. We conducted a 15N tracer addition experiment to study the ability of two alpine plant species, Acomastylis rossii and Deschampsia caespitosa, to partition organic and inorganic forms of N. The species are codominant and associated with strong plant–soil feedbacks that affect N cycling. We manipulated interspecific interactions by removing Acomastylis or Deschampsia from areas where the species were codominant to test if N uptake patterns varied in the presence of the other species. We found that Deschampsia acquired organic and inorganic N more rapidly than Acomastylis, regardless of neighbor treatment. Plant N uptake—specifically ammonium uptake—increased with plant density and the presence of an interspecific neighbor. Interestingly, this change in N uptake was not in the expected direction to reduce niche overlap and instead suggested facilitation of ammonium use. To test if N acquisition patterns were consistent with plant–soil feedbacks, we also compared microbial rhizosphere extracellular enzyme activity in patches dominated by one or the other species and in areas where they grew together. The presence of both species was generally associated with increased rhizosphere extracellular enzyme activity (five of ten enzymes) and a trend towards increased foliar N concentrations. Taken together, these results suggest that feedbacks through the microbial community, either in response to increased plant density or specific plant neighbors, could facilitate coexistence. However, coexistence is promoted via enhanced resource uptake rather than reduced niche overlap. The importance of resource partitioning to reduce the intensity of competitive interactions might vary across systems, particularly as a function of plant-soil feedbacks.
Keywords:Coexistence  Foliar nitrogen concentrations  Interspecific interactions  Neighbor effect  Nitrogen uptake patterns  Plant resource partitioning  Plant–  soil feedback
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号