首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Signal strains that can detect certain DNA replication and membrane mutants of Escherichia coli: isolation of a new ssb allele, ssb-3.
Authors:C S Schmellik-Sandage and  E S Tessman
Institution:Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.
Abstract:Mutations in several dna genes of Escherichia coli, when introduced into a strain with a lac fusion in the SOS gene sulA, resulted in formation of blue colonies on plates containing 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-Gal). Unexpectedly, several lines of evidence indicated that the blue colony color was not primarily due to induction of the SOS system but rather was due to a membrane defect, along with the replication defect, making the cell X-Gal extrasensitive (phenotypically Xgx), possibly because of enhanced permeability to X-Gal or leakage of beta-galactosidase. (i) In most cases, beta-galactosidase specific activity increased only two- to threefold. (ii) Mutations conferring tolerance to colicin E1 resulted in blue colony color with no increase in beta-galactosidase specific activity. (iii) Mutations in either the dnaA, dnaB, dnaC, dnaE, dnaG, or ssb gene, when introduced into a strain containing a bioA::lac fusion, produced a blue colony color without an increase in beta-galactosidase synthesis. These lac fusion strains can serve as signal strains to detect dna mutations as well as membrane mutations. By localized mutagenesis of the 92-min region of the chromosome of the sulA::lac signal strain and picking blue colonies, we isolated a novel ssb allele that confers the same extreme UV sensitivity as a delta recA allele, which is a considerably greater sensitivity than that conferred by the two well-studied ssb alleles, ssb-1 and ssb-113. The technique also yielded dnaB mutants; fortuitously, uvrA mutants were also found.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号