首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence for two distinct lysophospholipase activities that degrade lysophosphatidylcholine and lysophosphatidic acid in neuronal nuclei of cerebral cortex
Authors:R.Roy Baker  Huu-yi Chang
Affiliation:Department of Biochemistry, Room 5202, Medical Sciences Bldg., University of Toronto, Toronto, Ont. M5S 1A8, Canada
Abstract:Neuronal nuclei were isolated from immature rabbit cerebral cortex and nuclear lysophospholipase activities studied using two different 1-acyl lysophospholipids: lysophosphatidylcholine (lysoPC) and lysophosphatidic acid (lysoPA). Our interest in these two lysolipids arose from the observation that lysoPA could promote the acetylation of lysoPC by substantially inhibiting a very active nuclear lysoPC lysophospholipase activity, in a competitive manner (R.R. Baker, H.-y. Chang, Mol. Cell. Biochem. (1999) in press). As there was also evidence for nuclear lysoPA deacylation, it was of interest to see whether one activity could possibly utilize both lysolipid substrates. We now have evidence for two separate lysophospholipase activities in neuronal nuclei. The lysoPC lysophospholipase activity was the more active, more highly enriched in the neuronal nuclei, and showed optimal activity at pH 8.4–9, while the lysoPA lysophospholipase activity was maintained over a much broader pH range. The lysoPC activity was substantially inhibited by free fatty acid, and showed considerable stimulation by serum albumin, while the activity utilizing lysoPA was much less affected by these agents. When lysoPC was added to incubations containing radioactive lysoPA, there was no significant inhibition found in rates of release of radioactive fatty acid, indicating that the lysoPA lysophospholipase activity did not utilize the lysoPC substrate. In incubations with lysoPC, MgATP and CoA brought about a sizable formation of phosphatidylcholine whose radioactivity was equally distributed between the sn-1 and sn-2 positions suggesting labelling both directly from the lysoPC substrate and from fatty acid produced by the lysophospholipase activity. By comparison, with the radioactive lysoPA substrate, MgATP and CoA promoted relatively lower levels of phosphatidic acid formation whose principal labelling came directly from the radioactive lysoPA. Largely because of the high activity of the nuclear lysoPC lysophospholipase, there is considerable potential in the neuronal nucleus to limit the use of lysoPC in other reactions, such as the formation of acylPAF (1-acyl analogue of platelet activating factor). It is of interest that conditions associated with brain ischaemia such as increased free fatty acid levels, falling pH and declines in MgATP may allow a preservation of neuronal nuclear lysoPC levels for acetylation. The existence of a separate lysophospholipase activity for lysoPA allows an independent control of lysoPA which can serve as an important regulator of the nuclear lysoPC lysophospholipase.
Keywords:Lysophospholipase  Lysophosphatidylcholine  Lysophosphatidic acid  Regulation  Neuronal nucleus  Rabbit cerebral cortex  PA, phosphatidic acid  PC, phosphatidylcholine  Corresponding author. Fax: +1-416-978-8548
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号