首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Osmotic adjustment of chickpea (Cicer arietinum) is not associated with changes in carbohydrate composition or leaf gas exchange under drought
Authors:PS Basu  JD Berger  NC Turner  SK Chaturvedi  M Ali  & KHM Siddique
Institution:Indian Institute of Pulses Research (ICAR), Kanpur 208 024, India;
Centre for Legumes in Mediterranean Agriculture (CLIMA), M080, Faculty of Natural &Agricultural Sciences, The University of Western Australia, Western Australia, Australia;
CSIRO Plant Industry, Wembley, Western Australia, Australia
Abstract:Genetic differences in osmotic adjustment (OA) have been reported among chickpea (Cicer arietinum) cultivars. In this study eight advanced breeding lines (ABLs) derived from a cross between CTS 60543 (high OA) and Kaniva (low OA) and Tyson (medium OA) and Kaniva, along with the parents, were evaluated for OA, leaf carbohydrate composition and leaf gas exchange under dryland field conditions in India. The water potential (WP) decreased to lower values (less than −2.5 MPa) in Tyson, M 110 and M 86 than in the other genotypes. With decrease in WP, OA increased by 0.5 MPa in Kaniva and CTS 60543 to 1.3 MPa in M 55. As the decrease in WP varied with genotype, when OA was regressed against WP M 39 and M 55 had greater increases in OA with decrease in WP than the remaining nine genotypes, including the parents. As WP decreased, leaf starch content decreased while total soluble sugars, hexoses and sucrose increased: the decrease in starch was much smaller in M 93 and M 129 than in Tyson and M 51, but genotypic differences could not be detected in the increase in total sugars, hexoses or sucrose. The rates of photosynthesis and transpiration decreased as the WP became more negative, but M 129 reached low rates of photosynthesis (2 μmol m−2 s−1) and transpiration at a WP of −1.7 MPa, whereas Tyson reached the same low rate at −2.4 MPa. While OA varied among the chickpea genotypes, the differences were not associated with the changes in carbohydrate composition or the rates of gas exchange at low values of WP. Further, the degree of OA of the 11 genotypes was not the same as when they were selected for differences in OA under rainout shelter conditions in the field in Australia, suggesting that OA may show poor stability depending upon the stress level, location or physiological stage of the plant. This suggests that OA is not a valuable drought-resistance trait to select for in chickpea breeding programmes.
Keywords:Advanced breeding inbred lines  hexoses  leaf water potential  photosynthesis  relative water content  starch concentration  sucrose  sucrose-phosphate synthase  total soluble sugars  transpiration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号