首页 | 本学科首页   官方微博 | 高级检索  
     


A comparison of phenotypic plasticity in the native dandelion Taraxacum ceratophorum and its invasive congener T. officinale
Authors:Brock Marcus T  Weinig Cynthia  Galen Candace
Affiliation:Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA. brockmt@umn.edu
Abstract:We compared plastic responses to variation in the light environment for sympatric populations of native and exotic dandelion species, Taraxacum ceratophorum and Taraxacum officinale. Plasticity in leaf size, inflorescence height, reproductive phenology and dispersal-related traits were measured under experimentally altered light quality (red : far-red light ratio, R : FR) and light intensity (photosynthetically active radiation, PAR). To test whether differences in means and reaction norms of dispersal-related traits between species affected colonization potential, we created seed-dispersal models based on seed-fall rate and release height. Differences in plasticity between species were not systematic, but varied in direction and magnitude among traits. Taraxacum officinale produced larger leaves that exhibited greater plasticity in size under variable light intensity than T. ceratophorum. Plasticity in scape length at flowering occurred in relation to R : FR ratio in both species, but tended to be greater in T. ceratophorum. Seed-bearing scapes of T. officinale were taller and more canalized in height across light regimes than scapes of T. ceratophorum. Seeds of T. officinale were smaller than seeds of T. ceratophorum. Models predict greater dispersal in T. officinale within open and vegetated habitats. In contrast to the idea that plasticity promotes invasiveness, results suggest that the lack of plasticity in dispersal-related traits enhances the colonization potential of T. officinale.
Keywords:ecological breadth    invasiveness    plasticity    seed dispersal    Taraxacum
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号