首页 | 本学科首页   官方微博 | 高级检索  
     


Measurement of DNA damage in mammalian cells using flow cytometry
Authors:A E Milner  A T Vaughan  I P Clark
Abstract:A technique for the detection of DNA damage induced by radiation insult has been developed. Cells were lysed with a buffer containing 2 M sodium chloride to release the DNA in a supercoiled form, the nucleoid. These were stained with the DNA intercalating dye, ethidium bromide, and exposed to laser light within a flow cytometer. Scattered and fluorescent light was analyzed from the laser/nucleoid interaction following irradiation of viable cells with gamma rays. The addition of ethidium bromide to prepared nucleoids caused a reduction in scattered light due to condensation of the nucleoid. Irradiation of cells prior to nucleoid production and ethidium bromide treatment restricted this condensation and produced a dose-dependent increase in laser scatter. Nucleoids derived from human lymphocytes showed enhanced light scatter from 5 Gy, compared to Chinese hamster ovary (CHO) fibroblasts where doses above 10 Gy were required. Up to 30 Gy CHO nucleoids showed a dose-dependent reduction in the ethidium bromide fluorescence. This technique allows detection of altered light scattering and fluorescent behavior of nucleoids after cellular irradiation; these may be related to structural changes within the nucleus induced by the radiation. The use of flow cytometry compared to other methods allows a rapid analysis of nuclear damage within individual cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号