首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of the covalent heme-protein bonds on the redox thermodynamics of human myeloperoxidase
Authors:Battistuzzi Gianantonio  Stampler Johanna  Bellei Marzia  Vlasits Jutta  Soudi Monika  Furtmüller Paul G  Obinger Christian
Affiliation:Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
Abstract:Myeloperoxidase (MPO) is the most abundant neutrophil enzyme and catalyzes predominantly the two-electron oxidation of ubiquitous chloride to generate the potent bleaching hypochlorous acid, thus contributing to pathogen killing as well as inflammatory diseases. Its catalytic properties are closely related with unique posttranslational modifications of its prosthetic group. In MPO, modified heme b is covalently bound to the protein via two ester linkages and one sulfonium ion linkage with a strong impact on its (electronic) structure and biophysical and chemical properties. Here, the thermodynamics of the one-electron reduction of the ferric heme in wild-type recombinant MPO and variants with disrupted heme-protein bonds (M243V, E242Q, and D94V) have been investigated by thin-layer spectroelectrochemistry. It turns out that neither the oligomeric structure nor the N-terminal extension in recombinant MPO modifies the peculiar positive reduction potential (E°' = 0.001 V at 25 °C and pH 7.0) or the enthalpy or entropy of the Fe(III) to Fe(II) reduction. By contrast, upon disruption of the MPO-typical sulfonium ion linkage, the reduction potential is significantly lower (-0.182 V). The M243V mutant has an enthalpically stabilized ferric state, whereas its ferrous form is entropically favored because of the loss of rigidity of the distal H-bonding network. Exchange of an adjacent ester bond (E242Q) induced similar but less pronounced effects (E°' = -0.094 V), whereas in the D94V variant (E°' = -0.060 V), formation of the ferrous state is entropically disfavored. These findings are discussed with respect to the chlorination and bromination activity of the wild-type protein and the mutants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号