首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparison of the folding processes of distantly related proteins. Importance of hydrophobic content in folding
Authors:Calloni Giulia  Taddei Niccolò  Plaxco Kevin W  Ramponi Giampietro  Stefani Massimo  Chiti Fabrizio
Institution:Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Florence, Italy.
Abstract:The N-terminal domain of HypF from Escherichia coli (HypF-N) is a 91 residue protein module sharing the same folding topology and a significant sequence identity with two extensively studied human proteins, muscle and common-type acylphosphatases (mAcP and ctAcP). With the aim of learning fundamental aspects of protein folding from the close comparison of so similar proteins, the folding process of HypF-N has been studied using stopped-flow fluorescence. While mAcP and ctAcP fold in a two-state fashion, HypF-N was found to collapse into a partially folded intermediate before reaching the fully folded conformation. Formation of a burst-phase intermediate is indicated by the roll over in the Chevron plot at low urea concentrations and by the large jump of intrinsic and 8-anilino-1-naphtalenesulphonic acid-derived fluorescence immediately after removal of denaturant. Furthermore, HypF-N was found to fold rapidly with a rate constant that is approximately two and three orders of magnitudes faster than ctAcP and mAcP, respectively. Differences between the bacterial protein and the two human counterparts were also found as to the involvement of proline isomerism in their respective folding processes. The results clearly indicate that features that are often thought to be relevant in protein folding are not highly conserved in the evolution of the acylphosphatase superfamily. The large difference in folding rate between mAcP and HypF-N cannot be entirely accounted for by the difference in relative contact order or related topological metrics. The analysis shows that the higher folding rate of HypF-N is in part due to the relatively high hydrophobic content of this protein. This conclusion, which is also supported by the highly significant correlation found between folding rate and hydrophobic content within a group of proteins displaying the topology of HypF-N and AcPs, suggests that the average hydrophobicity of a protein sequence is an important determinant of its folding rate.
Keywords:folding  topology  acylphosphatase  hydrophobicity  evolution
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号