Stereochemical inversion at C-15 accompanies the enzymatic isomerization of all-trans- to 11-cis-retinoids |
| |
Authors: | W C Law R R Rando |
| |
Affiliation: | Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115. |
| |
Abstract: | all-trans-Retinol (vitamin A) is processed by membranes from the pigment epithelium of the amphibian or bovine eye to form 11-cis-retinoids. When the isomerization reaction is performed with either [15(S)-3H,14C]-all-trans-retinol or [15(R)-3H,14C]-all-trans-retinol as substrate, the resultant 11-cis-retinals, formed by the in vitro enzymatic oxidation of the retinols, retain their 3H in the former case and lose it in the latter. The ocular all-trans- (pro-R specific) and 11-cis-retinol (pro-S specific) dehydrogenases operate with different stereochemistries with respect to the prochiral methylene hydroxyl centers of their substrates. Inversion of stereochemistry at the prochiral retinol centers was shown to accompany the isomerization process in both the amphibian and bovine systems. The 11-cis-retinol formed from [15(S)-3H,14C]-all-trans-retinol was chemically isomerized with I2 to produce [15(R)-3H,14C]-all-trans-retinol. The 11-cis-retinol formed from [15(R)-3H,14C]-all-trans-retinol was chemically isomerized with I2 to produce [15(S)-3H,14C]-all-trans-retinol. The stereochemistry at the prochiral center of retinol is not affected by the I2-catalyzed double-bond isomerization process and, hence, inversion of stereochemistry at C-15 must accompany isomerization. The same inverted stereochemistry was found with the associated retinyl palmitates. Possible mechanistic reasons for the observed inversion of stereochemistry during isomerization are discussed. |
| |
Keywords: | |
|
|