首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Repair of helix-stabilizing anthramycin-N2 guanine DNA adducts by UVRA and UVRB proteins.
Authors:M S Tang  M E Nazimiec  R P Doisy  J R Pierce  L H Hurley  B E Alderete
Institution:Science Park-Research Division University of Texas, M.D. Anderson Cancer Center, Smithville 78957.
Abstract:The transfectivity of anthramycin (Atm)-modified phi X174 replicative form (RF) DNA in Escherichia coli is lower in uvrA and uvrB mutant cells but much higher in uvrC mutant cells compared to wild-type cells. Pretreatment of the Atm-modified phage DNA with purified UVRA and UVRB significantly increases the transfectivity of the DNA in uvrA or uvrB mutant cells. This pretreatment greatly reduces the UVRABC nuclease-sensitive sites (UNSS) and Atm-induced absorbance at 343 nm in the Atm-modified DNA without producing apurinic sites. The reduction of UNSS is proportional to the concentrations of UVRA and UVRB and the enzyme-DNA incubation time and requires ATP. We conclude that there are two different mechanisms for repairing Atm-N2 guanine adducts by UVR proteins: (1) UVRA and UVRB bind to the Atm-N2 guanine double-stranded DNA region and consequently release the Atm from the adducted guanine; (2) UVRABC makes an incision at both sides of the Atm-DNA adduct. The latter mechanism produces potentially lethal double-strand DNA breaks in Atm-modified phi X174 RF DNA in vitro.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号