首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of metallothioneins in superoxide radical generation during copper redox cycling: defining the fundamental function of metallothioneins
Authors:Achard-Joris Maud  Moreau Jean-Luc  Lucas Megumi  Baudrimont Magalie  Mesmer-Dudons Nathalie  Gonzalez Patrice  Boudou Alain  Bourdineaud Jean-Paul
Institution:UMR 5805 CNRS - Université Bordeaux 1, Team Géochimie et Ecotoxicologie des Métaux dans les systèmes Aquatiques, Station Marine d'Arcachon, Place du Dr. Peyneau, 33120 Arcachon, France.
Abstract:In order to demonstrate the in vivo antioxidant properties of metallothioneins (MTs), the bacteria Escherichia coli was used as a cell reactor in which we compared the metal binding and antioxidative functions of MTs from different species, with different structures and polypeptide lengths. No protective effects of cytoplasmic MTs from cadmium (Cd) or zinc (Zn) contamination were observed in a wild-type E. coli strain, although these MTs can efficiently bind both Cd and Zn. To test their antioxidant properties, MTs were expressed within the cytoplasm of a sodA sodB deficient mutated strain (QC1726). However, a paradoxical MT toxicity was found when this strain was contaminated with Cd and Zn, suggesting that in a wild-type strain, superoxide dismutase counteracts MT toxicity. The most toxic MT was the one with the strongest Cd and Zn binding capacities. This toxic effect was linked to the generation of superoxide radicals, since a Cd-contaminated QC1726 strain expressing oyster MT isoforms produced 75-85% more O(2)*(-) than the control QC1726 strain. Conversely, under anaerobiosis or in the presence of a copper chelator, MTs protected QC1726 strain from Cd and Zn contamination. A model is proposed to explain the observed MT toxicity.
Keywords:Metallothionein  Cadmium  Zinc  Copper  Superoxide radical
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号