首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electrolyte distribution and active salt uptake in frog skin
Authors:HUF E G  WILLS J P  ARRIGHI M F
Institution:From the Department of Physiology, Medical College of Virginia, Richmond
Abstract:1. The "chloride space" in frog skin was determined and found to be 69.7 per cent by weight of wet skin. The chloride space occupies about 94 per cent of the total water space of skin. From this and other information, it appears that the "non-chloride space" measures only a part of the space occupied by the structural elements of skin. This space is referred to here as the intracellular compartment and the remainder as the extracellular compartment of frog skin. On this basis, potassium and sodium in skin are distributed as follows: total sodium, 60 to 75 µeq./gm. of wet skin; all sodium is probably extracellular; total potassium, 39 to 49 µeq./gm.; intracellular potassium, 37 to 47 µeq./gm. 2. Skins were immersed in solutions differing from each other in their sodium and potassium concentrations. Three levels of NaCl were studied: 48, 119, and 169 µeq./ml. For each of these solutions (referred to below as diluted, physiological, and concentrated saline), the potassium levels were varied from 0.1 to 20 µeq./ml. For skins in solutions low in potassium and high in sodium, it was found that an exchange of intracellular potassium against extracellular sodium occurs. The ratio for the number of potassium ions lost/number of sodium ions gained was 4:1,4:6, and 4:8 for skin in K+-free diluted, physiological, and concentrated saline, respectively. 3. Uptake of NaCl by the epithelium of frog skin is dependent on the potassium concentration of the environment. For skins in physiological saline, net uptake of NaCl was optimal (0.90 µeq. x cm.–2 x hr.–1) at 1 to 5 µeq. K+/ml. For skins in diluted and concentrated saline optimal NaCl uptake was seen at potassium concentrations of approximately 5 and 10 µeq. K+/ml., respectively. Net uptake of NaCl by the skin is also discussed, with relation to the potassium balance of skin. 4. Skin potentials decreased with increasing extracellular potassium concentration when diluted saline solutions were used. The opposite of this was found for skins in concentrated saline. For skins in physiological saline, skin potentials rose sharply from rather low values, when placed in solutions very low in potassium, to relatively high values, when immersed in solutions containing 1 to 5 µeq. K+/ml. Further increase in potassium concentration of the bath led to slight reductions in skin potentials. The highest potentials observed were of the order of 40 mv. In all cases studied, the inside was positive with relation to the outside. 5. It can be shown that values for intracellular potassium concentration as a function of extracellular potassium concentration satisfy, at a first but good approximation, Freundlich's isotherm. A modification of Freundlich's isotherm, recently introduced by Sips, may also be used to correlate the experimental data quantitatively. Since the latter isotherm has a rational interpretation, it is suggested that this be used, rather than Freundlich's isotherm, to express quantitatively the dependence of intracellular on extracellular potassium in frog skin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号