首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum)
Authors:Kim Tae Eun  Kim Seong-Ki  Han Tae Jin  Lee June Seung  Chang Soo Chul
Institution:Department of Biological Science, Ewha Womans University, Seoul 120–750, South Korea; Department of Life Science, Chung-Ang University, Seoul, 156–756, South Korea; Division of Biology, Hallym University, Chuncheon 200–702, South Korea; Centre for Cell Signalling Research, Ewha Womans University, Seoul 120–750, South Korea
Abstract:The effects of ABA and putrescine, a polyamine, on cold-induced membrane leakage were investigated using primary leaves of wild-type and an ABA-deficient mutant, flacca , of tomato ( Lycopersicon esculentum Mill.). The amount of chilling-induced electrolyte leakage from flacca leaves was much higher than that from the wild-type leaves. When applied exogenously ABA reduced cold-induced electrolyte leakage from leaves of both wild-type and the flacca mutant. However, the cold-induced electrolyte leakage from flacca leaves was not as pronounced as in the wild-type indicating that ABA is an important mediator in response to cold stress in the leaves. Putrescine reduced cold-induced electrolyte leakage from both wild-type and flacca leaves. Synthesis of putrescine in the leaves was increased by cold treatment. DFMO, a biosynthetic inhibitor of the polyamine, increased electrolyte leakage from cold-treated leaves, and exogenously applied putrescine decreased the enhanced leakage to the control level. Therefore, this polyamine is thought also to be involved in the response to cold stress of tomato leaves. Both ABA and putrescine were protective against cold stress, but exogenously applied ABA decreased the endogenous level of putrescine in the leaves. Furthermore, the DMFO-increased electrolyte leakage in cold-stressed leaves was completely abolished by the application of ABA. These results suggest that ABA is a major regulator in the response to cold stress in tomato leaves and that it does not exert its role via putrescine in the response to cold stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号