首页 | 本学科首页   官方微博 | 高级检索  
     


Interleukin-1 has opposing effects on connective tissue growth factor and tenascin-C expression in human cardiac fibroblasts
Authors:Azhar Maqbool  Karen E. Hemmings  David J. O'Regan  Stephen G. Ball  Karen E. Porter  Neil A. Turner
Affiliation:1. Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics (LIGHT), University of Leeds, Leeds LS2 9JT, UK;2. Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;3. Department of Cardiac Surgery, The Yorkshire Heart Centre, Leeds General Infirmary, Leeds LS1 3EX, UK
Abstract:Cardiac fibroblasts (CF) play a central role in the repair and remodeling of the heart following injury and are important regulators of inflammation and extracellular matrix (ECM) turnover. ECM-regulatory matricellular proteins are synthesized by several myocardial cell types including CF. We investigated the effects of pro-inflammatory cytokines on matricellular protein expression in cultured human CF. cDNA array analysis of matricellular proteins revealed that interleukin-1α (IL-1α, 10 ng/ml, 6 h) down-regulated connective tissue growth factor (CTGF/CCN2) mRNA by 80% and up-regulated tenascin-C (TNC) mRNA levels by 10-fold in human CF, without affecting expression of thrombospondins 1–3, osteonectin or osteopontin. Western blotting confirmed these changes at the protein level. In contrast, tumor necrosis factor α (TNFα) did not modulate CCN2 expression and had only a modest stimulatory effect on TNC levels. Signaling pathway inhibitor studies suggested an important role for the p38 MAPK pathway in suppressing CCN2 expression in response to IL-1α. In contrast, multiple signaling pathways (p38, JNK, PI3K/Akt and NFκB) contributed to IL-1α-induced TNC expression. In conclusion, IL-1α reduced CCN2 expression and increased TNC expression in human CF. These observations are of potential value for understanding how inflammation and ECM regulation are linked at the level of the CF.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号