首页 | 本学科首页   官方微博 | 高级检索  
     


Hyperuricemia influences tryptophan metabolism via inhibition of multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP)
Authors:Anita C.A. Dankers  Henricus A.M. Mutsaers  Henry B.P.M. Dijkman  Lambertus P. van den Heuvel  Joost G. Hoenderop  Fred C.G.J. Sweep  Frans G.M. Russel  Rosalinde Masereeuw
Affiliation:1. Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre (RUNMC), Nijmegen, The Netherlands;2. Department of Physiology, RUNMC, Nijmegen, The Netherlands;3. Department of Pathology, RUNMC, Nijmegen, The Netherlands;4. Department of Pediatrics, RUNMC, Nijmegen, The Netherlands;5. Department of Pediatrics, Catholic University Leuven, Leuven, Belgium;6. Department of Laboratory Medicine, RUNMC, Nijmegen, The Netherlands
Abstract:Hyperuricemia is related to a variety of pathologies, including chronic kidney disease (CKD). However, the pathophysiological mechanisms underlying disease development are not yet fully elucidated. Here, we studied the effect of hyperuricemia on tryptophan metabolism and the potential role herein of two important uric acid efflux transporters, multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP). Hyperuricemia was induced in mice by treatment with the uricase inhibitor oxonic acid, confirmed by the presence of urate crystals in the urine of treated animals. A transport assay, using membrane vesicles of cells overexpressing the transporters, revealed that uric acid inhibited substrate-specific transport by BCRP at clinically relevant concentrations (calculated IC50 value: 365 ± 13 μM), as was previously reported for MRP4. Moreover, we identified kynurenic acid as a novel substrate for MRP4 and BCRP. This finding was corroborated by increased plasma levels of kynurenic acid observed in Mrp4?/? (107 ± 19 nM; P = 0.145) and Bcrp?/? mice (133 ± 10 nM; P = 0.0007) compared to wild type animals (71 ± 11 nM). Hyperuricemia was associated with > 1.5 fold increase in plasma kynurenine levels in all strains. Moreover, hyperuricemia led to elevated plasma kynurenic acid levels (128 ± 13 nM, P = 0.005) in wild type mice but did not further increase kynurenic acid levels in knockout mice. Based on our results, we postulate that elevated uric acid levels hamper MRP4 and BCRP functioning, thereby promoting the retention of other potentially toxic substrates, including kynurenic acid, which could contribute to the development of CKD.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号