首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Native and exotic foundation grasses differ in traits and responses to belowground tri-trophic interactions
Authors:Matthew L Reid  Sarah M Emery
Institution:1.Department of Biology,University of Louisville,Louisville,USA
Abstract:A plant’s growth and fitness are influenced by species interactions, including those belowground. In primary successional systems, belowground organisms are known to have particularly important control over plant growth. Exotic plant invasions in these and other habitats may in part be explained by altered associations with belowground organisms compared to native plants. We investigated the growth responses of two foundation grasses on Great Lakes sand dunes, the native grass Ammophila breviligulata and the exotic grass Leymus arenarius, to two groups of soil organisms with important roles in dune succession: arbuscular mycorrhizal fungi (AMF) and plant-parasitic nematodes (PPN). We manipulated the presence/absence of two generalist belowground species known to occur in Great Lakes dunes, Rhizophagus intraradices (AMF) and Pratylenchus penetrans (PPN) in a factorial greenhouse experiment and assessed the biomass production and root architectural traits of the plants. There were clear differences in growth and above- and belowground architecture between Ammophila and Leymus, with Leymus plants being bigger, taller, and having longer roots than Ammophila. Inoculation with Rhizophagus increased above- and belowground biomass production by ~32% for both plant species. Inoculation with Pratylenchus decreased aboveground biomass production by ~36% for both plant species. However belowground, the exotic Leymus was significantly more resistant to PPN than the native Ammophila, and gained more benefits from AMF in belowground tri-trophic interactions than Ammophila. Overall, our results indicate that differences in plant architecture coupled with altered belowground interactions with AMF and PPN have the potential to promote exotic plant invasion.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号